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ABSTRACT: Fluorocoxib A is an effective COX-2-targeted optical imaging agent, used for in vivo detection of inflammatory
tissues and premalignant and malignant tumors that express elevated levels of COX-2 (Uddin et al. Cancer Res. 2010, 70, 3618−
3627). In an effort to discover novel optical probes for COX-2, a trifluoromethyl analogue of fluorocoxib A (CF3-fluorocoxib A)
was synthesized and evaluated for its ability to inhibit COX-2 in vitro purified enzyme and human cancer cell lines. Kinetic
analysis revealed that CF3-fluorocoxib A is a slow, tight binding inhibitor of COX-2 that exhibits low nanomolar inhibitory
potency. While CF3-fluorocoxib A and fluorocoxib A are similar in structure, CF3-fluorocoxib A shows improved potency in
inhibition of wtCOX-2 and with a series of site-directed COX-2 mutants. After intraperitoneal injection, selective uptake of CF3-
fluorocoxib A is detected in inflamed mouse paws compared to noninflamed contralateral paws by optical imaging, and uptake is
blocked by pretreatment with the COX-2 inhibitor, celecoxib. Selective uptake is also detected in the COX-2-positive human
tumor xenografts (1483 HNSCC) as compared with the COX-2-negative tumor xenografts (HCT116) in an in vivo nude mouse
tumor model. These in vitro and in vivo studies suggest that binding to COX-2 is the major determinant of uptake of CF3-
fluorocoxib A into the inflamed tissues and tumor xenografts. Thus, this new COX-2-targeted imaging probe should find utility in
the detection and evaluation of COX-2 status in naturally occurring malignancies.
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Cyclooxygenases (COX) catalyze the biotransformation of
arachidonic acid into a wide variety of prostaglandins,

which are important biological mediators of inflammation.1

COX-1 is constitutively expressed in most normal tissues,
where it performs housekeeping functions, such as maintenance
of vascular tone and cytoprotection of the gastric mucosa.2

COX-2 is an inducible enzyme that is expressed in
inflammation, where it modulates edema and pain, and in
proliferative diseases, where it promotes growth and enhances
metastasis.3 COX-2 overexpression is an early event in
tumorigenesis, and it plays a role in tumor progression.4

Selective COX-2 inhibitors are useful in the treatment of
various cancers.5,6 Therefore, COX-2 can be used as a target for
imaging of inflammation and cancer with fluorescently
conjugated COX-2 inhibitors. We recently reported the
synthesis and evaluation of fluorocoxib A for the selective

visualization of COX-2 in inflammatory and malignant lesions.7

Herein, we report the synthesis and evaluation of a
trifluoromethyl analogue of fluorocoxib A as a selective COX-
2 inhibitor in purified protein and cells. We also describe the
enzyme−inhibitor binding kinetics and in vivo delivery of CF3-
fluorocoxib A to inflammatory tissues and human tumor
xenografts (Figure 1).
CF3-indomethacin was synthesized using a Fisher indole

cyclization of 5,5,5-trifluorolevulinic acid lactone with 1-(4-
methoxyphenyl)-1-(4-chlorobenzoyl)hydrazine hydrochloride
under acidic conditions, as described in a previous report.8
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The CF3-indomethacin was then coupled with mono N-tert-
butoxycarbonyl-butylenediamine using 1-(3-dimethylamino-
propyl)-3-ethylcarbodiimide hydrochloride, 1-hydroxybenzo-
triazole hydrate, and N,N-diisopropylethylamine to afford t-
butyl 4-[2-{1-(4-chlorobenzoyl)-5-methoxy-2′-trifluoromethyl-
1H-indol-3-yl}acetamido]butylcarbamate (Scheme 1). Treat-

ment of 4-[2-{1-(4-chlorobenzoyl)-5-methoxy-2′-trifluoro-
methyl-1H-indol-3-yl}acetamido]butylcarbamate with HCl
(gas) gave N-(4-aminobutyl)-2-{1-(4-chlorobenzoyl)-5-me-
thoxy-2′-trifluoromethyl-1H-indol-3-yl}acetamide hydrochlor-
ide. 5-Carboxy-X-rhodamine N-succinnimidyl ester (5-ROX
NSE)9 was reacted with the free amine of N-(4-aminobutyl)-2-
{1-(4-chlorobenzoyl)-5-methoxy-2′-trifluoromethyl-1H-indol-
3-yl}acetamide hydrochloride in the presence of triethylamine
to give N-{(5-carboxy-X-rhodaminyl)but-4-yl}-2-{1-(4-chloro-

benzoyl)-5-methoxy-2′-trifluoromethyl-1H-indol-3-yl}-
acetamide (CF3-fluorocoxib A) (Scheme 1). Synthetic
procedures and the characterization of all the new compounds
are described in the Supporting Information.
CF3-fluorocoxib A was assayed against purified COX-2 or

COX-1 by a previously reported thin layer chromatography
assay.10 We found that CF3-fluorocoxib A is a selective and
potent inhibitor of COX-2. The calculated LogP values of CF3-
fluorocoxib A and fluorocoxib A are 6.96 and 6.34, respectively.
The IC50 value for inhibition of COX-2 is 0.56 μM with no
inhibition of COX-1 up to 25 μM. CF3-fluorocoxib A was
assayed in RAW264.7 murine macrophage-like cells to check
for membrane permeability and subsequent COX-2 inhib-
ition.11 The IC50 value for inhibition of COX-2 by CF3-
fluorocoxib A was 0.08 μM. Further, the ability of CF3-
fluorocoxib A to inhibit COX-2 in 1483 head and neck
squamous cell carcinoma (HNSCC) cells was assayed.7 CF3-
fluorocoxib A was incubated with 1483 HNSCC cells at several
concentrations (0−5 μM) for 30 min followed by the addition
of 10 μM [1-14C]-arachidonic acid (∼55 mCi/mmol). CF3-
Fluorocoxib A inhibited COX-2 with an IC50 value of 0.59 μM.
Nearly all COX inhibitors, whether nonselective, like

indomethacin, or COX-2-selective, like celecoxib, bind with
the enzyme in a noncovalent manner. The one notable
exception is aspirin, which irreversibly inactivates COX-1 and
COX-2 through covalent modification of an active site serine
residue. Indomethacin and celecoxib are examples of slow,
tight-binding COX inhibitors. They rapidly establish an
equilibrium with a loosely bound enzyme−inhibitor complex,
which slowly converts to a much more tightly bound complex
(eq 1). Figure 2a shows the time- and concentration-dependent
inhibition of mCOX-2 by CF3-fluorocoxib A. The time-
dependency of COX-2 inhibition is clearly evident, as it
requires approximately 10 min to achieve maximal inhibition.
Note that the plateau of 15% activity remaining at high CF3-
fluorocoxib A concentrations suggests some reversibility of the
tightly bound enzyme−inhibitor complex. Figure 2b displays a
plot of the observed single exponential rate constants for
inhibition (kobs) as a function of CF3-fluorocoxib A

Figure 1. Chemical evolution of COX-2-selective inhibitors from nonsteroidal anti-inflammatory drug indomethacin.

Scheme 1a

aReagents and conditions (a) H2N-(CH2)4-NH-BOC, 1-(3-dimethy-
laminopropyl)-3-ethylcarbodiimide hydrochloride, 1-hydroxybenzo-
triazole hydrate, N,N-diisopropylethylamine, dimethyl formamide, 25
°C, 16 h; (b) HCl (gas), CH2Cl2, 025 °C 1 h; (c) 5-carboxy-X-
rhodamine N-succinimidyl ester, triethylamine, dimethylsulfoxide, 25
°C, 16 h.
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concentration, which allows the determination of the
equilibrium constant for initial association (KI = k−1/k1) and
the forward and reverse rate constants for the conversion to the
tightly bound enzyme−inhibitor complex (k2 and k−2,
respectively, eq 2). CF3-fluorocoxib A and fluorocoxib A
demonstrate similar affinities for initial complex formation, as
indicated by their KI values (1.5 ± 0.35 and 1.7 ± 2.3 μM,
respectively). The forward rate constants (k2) are also similar
for these compounds (CF3-fluorocoxib A, k2 = 0.004 s−1;
fluorocoxib A, k2 = 0.005 s−1), and the reverse rate constants
(k−2) are essentially the same (CF3-fluorocoxib A, k−2 = 0.001
s−1; fluorocoxib A, k−2 = 0.001 s−1). The low rate constant for
dissociation of the tightly bound complex is a strong
contributing factor toward the potency of the compounds.

+ *
− −

H Ioo H IooE I [EI] EI
k

k

k

k

1

1

2

2

(1)

where KI = k−1/k1 and

=
*
+

+ −k
k

K
k

[I]
[I]obs

2

I
2

(2)

The C57BL/6 mouse footpad model is a well-established
system for the study of COX-2-dependent inflammation. COX-
2-derived prostaglandins have a significant role in the acute
edema induced by carrageenan injection into the paw.12 A
major advantage of this inflammation model is the ability to
image the inflamed mouse footpad in comparison to the
noninflamed contralateral footpad without COX-2 expression.
We injected 50 μL of 1% carrageenan in the rear right footpad
of each mouse (body weight 20−25 g) and waited 24 h for
inflammation to develop. Then, we injected the fluorescent
CF3-fluorocoxib A (1 mg/kg) intraperitoneally (i.p.) dissolved

in dimethyl sulfoxide. After 3 h, the animals were lightly
anesthetized with 2% isoflurane and placed in a Xenogen
IVIS200 optical imaging system. CF3-fluorocoxib A targeted the
inflamed footpad selectively over the contralateral control
footpad (Figure 3a). The dependence of compound uptake on
COX-2 in the inflammatory tissues was confirmed by blocking
the COX-2 active site with celecoxib. We administered
celecoxib dissolved in dimethyl sulfoxide (50 mg/kg, i.p.) at
24 h postcarrageenan and waited 1 h for absorption and
blockage of the COX-2 active site prior to dosing with CF3-
fluorocoxib A (1 mg/kg, i.p.). At 3 h postinjection of CF3-
fluorocoxib A, we lightly anesthetized the animals with 2%
isoflurane and imaged them using the Xenogen IVIS200
camera. There was no enrichment of CF3-fluorocoxib A in the
inflamed paw compared to the control paw (Figure 3b). Figure
3c displays the relative uptake of CF3-fluorocoxib A in the
inflamed footpad versus the control footpad by image analysis
of the data in Figure 3a (n = 3, p = 0.02). Also, imaging was
performed at 5 and 30 min points, where significant probe
distribution was observed in both paws.
We next evaluated the ability of CF3-fluorocoxib A to target

COX-2 in human tumor xenografts. Female nude mice were
injected in the left hip with COX-2-expressing human 1483
HNSCC cells or in the right hip with COX-2-null human
colorectal carcinoma (HCT116) cells. The tumor xenografts
were allowed to grow to approximately 800−1000 mm3.
Animals were injected (1 mg/kg, i.p.) with CF3-fluorocoxib A.
At 4 h postinjection, the animals were lightly anesthetized with
2% isoflurane and placed in the Xenogen IVIS 200 optical
imaging system. A significant uptake of CF3-fluorocoxib A was
documented in the COX-2-expressing 1483 tumors (Figure
4a), where as only a minimal uptake was observed in the COX-
2-null HCT116 tumors (Figure 4b). Figure 4c displays
quantification of the uptake of CF3-fluorocoxib A in the 1483
and HCT116 tumors obtained from image analysis (n = 4, p =
0.01). This suggests that the difference in uptake of CF3-
fluorocoxib A in 1483 and HCT116 xenografts is due to their
differential in COX-2 expression. A significant peritoneal
accumulation was detected at the earlier time points, which is
due the distribution of the CF3-fluorocoxib A in liver, kidney
with clearance in both urine and feces. CF3−Fluorocoxib A
exhibits promise for in vivo detection of COX-2-expressing
tumors that are deep-seated, such as tumors located in bladder,
colon or intestine using noninvasive endoscopic techniques.
Although, CF3-fluorocoxib A and fluorocoxib A are similar in

structure, dissimilarities or improved properties were observed
for CF3-fluorocoxib A in inhibition assays with a series of site-
directed COX-2 mutants (Table 1).13 The compounds
described earlier by our laboratory were conjugates of the
nonselective NSAID, indomethacin, with fluorophores.7 The
present compound is a conjugate of a COX-2-selective
inhibitor, CF3-indomethacin, with a fluorophore. It possesses
superior selectivity and binding characteristics for COX-2. The
inhibition of COX-2 by fluorocoxib A is due to the key
interactions of the 2′-CH3 group with the residues Ala-527, Val-
349, Ser-530, and Leu-531 that form a small hydrophobic
pocket. Mutation of Val-349 to Ala increases the potency of
fluorocoxib A by ∼2-fold due to enlargement of the pocket,
whereas mutation to Leu reduces the pocket size and decreases
the potency of fluorocoxib A by ∼6-fold. A more intense trend
was observed for CF3-fluorocoxib A, where it showed an
improved potency against Val-349 to Ala mutant and Val-349
to Leu mutant, suggesting that the 2′-trifluoromethyl group of

Figure 2. Kinetics of the time-dependent inhibition of COX-2 by CF3-
fluorocoxib A. The purified COX-2 enzyme was reconstituted with
heme and preincubated with the inhibitor at 37 °C for various times
(0, 0.5, 1, 3, 5, 10, 15, and 30 min) prior to the addition of the
substrate (50 μM). (a) Time-dependent inhibition of COX-2 by CF3-
fluorocoxib A at the indicated concentrations. (b) Secondary plot of
kobs versus inhibitor concentration used to generate values for KI, k2,
and k−2.
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CF3-fluorocoxib A binds with these residues more tightly then
that of the 2′-methyl group of fluorocoxib A. Improved
properties of CF3-fluorocoxib A were also observed with Ser-
530 to Ala mutant, Arg-120 to Ala mutant, or Val-89 to Trp/
Ser-119 to Trp double mutant, suggesting that the 2′-

Figure 3. In vivo labeling of COX-2 expression in C57BL/6 mouse
footpad inflammation by CF3-fluorocoxib A. The inflammation was
developed by injecting 50 μL 1% carrageenan into the right hind
footpad. (a) At 24 h postcarrageenan, the mouse was injected with
CF3-fluorocoxib A (1 mg/kg, i.p.). At 3 h postinjection of CF3-
fluorocoxib A, a mouse was lightly anesthetized with 2% isoflurane and
imaged in the Xenogen IVIS 200 optical imaging system. A significant
uptake of CF3-fluorocoxib A was documented in the inflamed footpad.
(b) At 24 h postcarrageenan, the mouse was predosed with celecoxib
(50 mg/kg, i.p.) 1 h before the administration of CF3-fluorocoxib A (1
mg/kg, i.p.). At 3 h postinjection of CF3-fluorocoxib A, the mouse was

Figure 3. continued

lightly anesthetized with 2% isoflurane and imaged in the Xenogen
IVIS 200 optical imaging system. There was minimal uptake of CF3-
fluorocoxib A in the inflamed footpad that was comparable to the
noninflamed foot. (c) Quantitation of CF3-fluorocoxib A uptake in
inflamed vs control footpad at 3 h postinjection of the agent (from
data in panel a).

Figure 4. In vivo labeling of COX-2-expressing cancer by CF3-
fluorocoxib A. Female nude mice bearing COX-2-expressing 1483
HNSCC and COX-2-null HCT116 tumors were dosed with CF3-
fluorocoxib A (1 mg/kg, i.p.). The animals were imaged at 4 h
postinjection of CF3-fluorocoxib A in a Xenogen IVIS200 optical
imaging instrument. (a) A significant uptake of CF3-fluorocoxib A was
documented in the COX-2-expressing 1483 tumors (arrow). (b)
Minimal uptake of CF3-fluorocoxib A was documented in the COX-2-
negative HCT116 tumors. (c) Quantitation of CF3-fluorocoxib A
uptake in COX-2-expressing 1483 tumors and COX-2-negative
HCT116 tumors at 4 h postinjection of the agent.
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trifluoromethyl group, the n-butyl diamide tether, or the 5-ROX
fluorophore of CF3-fluorocoxib A interacts with the respective
residues more tightly than the 2′-methyl group, the n-butyl
diamide linker group, or the 5-ROX fluorophore group of
fluorocoxib A.
In summary, CF3-fluorocoxib A has been synthesized and

evaluated as a potent fluorescent COX-2-specific inhibitor for
optical imaging. The fluorescent CF3-fluorocoxib A inhibited
COX-2 selectively in purified protein as well as in intact
inflammatory and cancer cells. CF3-fluorocoxib A is a slow and
tight binding inhibitor of COX-2 with similar binding kinetics
for COX-2 as the parent fluorocoxib A. Although CF3-
fluorocoxib A and fluorocoxib A share similar structural
features, CF3-fluorocoxib A is a more potent inhibitor of
wtCOX-2 and of a series of COX-2 mutants. CF3-fluorocoxib A
displays good selectivity of uptake in inflammatory tissues and
COX-2-expressing tumors compared to control tissues or
COX-2-negative tumors. Uptake of CF3-fluorocoxib A requires
the expression of COX-2 at the target site. Uptake is reduced
when the COX-2 active site is preblocked or in the absence of
COX-2 expression in the target site. These in vitro and in vivo
studies provide support for the conclusion that high specificity
and tight binding to the COX-2 enzyme is the major
determinant of uptake and retention of CF3-fluorocoxib A in
inflamed tissues and tumors. Thus, CF3-fluorocoxib A
represents a new optical imaging reagent for the detection
and evaluation of COX-2 status in naturally occurring
malignancies.
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Table 1. Inhibition of Wild-Type Ovine COX-1, Wild-Type
Mouse COX-2, and Mouse COX-2 Mutants by Fluorocoxib
A and CF3-Fluorocoxib A

wild-type or mutant
enzymes

fluorocoxib A
(IC50 μM)a

CF3-fluorocoxib A
(IC50 μM)a

wt hCOX-2 0.70 0.56
wt oCOX-1 >25 >25
V349A 0.38 0.18
V349L >4 0.72
S530A 0.32 0.16
R120A 2.00 0.36
V89W/S119W 1.30 0.51

aIC50 values are μM and represent time-dependent inhibition and
average determinations from three experiments.
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